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Background: Extreme heat is a leading weather-related cause of illness and death in many 

locations across the globe including subtropical Australia. The possibility of increasingly 

frequent and severe heat waves warrants continued efforts to reduce this health burden, which 

could be accomplished by targeting intervention measures toward the most vulnerable 

communities. 

Objectives: We sought to quantify spatial variability in heat-related morbidity in Brisbane, 

Australia, to highlight regions of the city with the greatest risk. We also aimed to find area-level 

social and environmental determinants of high risk within Brisbane.  

Methods: We used a series of hierarchical Bayesian models to examine city-wide and intra-city 

associations between temperature and morbidity using a 2007–2011 time series of 

geographically-referenced hospital admissions data. The models accounted for long-term time 

trends, seasonality, and day of week and holiday effects. 

Results: On average, a 10°C increase in daily maximum temperature during the summer was 

associated with a 7.2% increase in hospital admissions (95% CI: 4.7, 9.8%) on the following day. 

Positive statistically significant relationships between admissions and temperature were found 

for 16 of the city’s 158 areas; negative relationships were found for 5 areas. High-risk areas were 

associated with a lack of high income earners and higher population density.  

Conclusions: Geographically targeted public health strategies for extreme heat may be effective 

in Brisbane, as morbidity risk was found to be spatially variable. Emergency responders, health 

officials, and city planners could focus on short- and long-term intervention measures that reach 

communities in the city with lower incomes and higher population densities, including reduction 

of urban heat island effects. 
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Introduction  

Extreme temperature events, including single days and extended periods of high and low 

temperatures, have a negative health impact on urban populations across the globe (e.g., Gabriel 

and Endlicher 2011; Laaidi et al. 2012; Tong et al. 2010a). A temperature-health association has 

been demonstrated for major cities across Australia, spanning seasonal temperate climate zones 

like Sydney and Melbourne through to Brisbane in the subtropics (Huang et al. 2012; Loughnan 

et al. 2010; Vaneckova et al. 2010). Improving the resilience of the Australian population to 

extreme temperatures has been identified as a key research area, particularly in light of the 

prospects of a warmer climate with more frequent and dangerous heat waves (Bi et al. 2011; 

Guest et al. 1999). Researchers have already documented an increase in the number of hot days 

per year in Australia using meteorological records spanning several decades (Collins 2000), and 

most climate models project this pattern to continue or accelerate (Guest et al. 1999). While heat 

already exerts a toll on the population in terms of increased morbidity and mortality (and 

decreased comfort and productivity), the impact may be even greater in the coming decades 

because the ageing population will result in more people at high risk. Thus there is strong 

motivation to: 1) better understand the risks posed by extreme temperatures, including 

identifying vulnerable populations and communities, and 2) increase the capacity of residents 

and public health officials to take effective action to prevent negative health impacts (Huang et 

al. 2013). 

Brisbane is the third-largest city in Australia with over two million residents. The city has a 

coastal subtropical climate with warm, humid summers and mild winters. Residents are regularly 

exposed to high temperatures, and a structural acclimatization that has been used for decades is 

the characteristic “Queenslander” house that promotes ventilation to capture summer breezes. A 
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trade-off of this house style, however, is that the lack of strong seals and insulation makes it 

difficult and inefficient to keep houses thermally comfortable during periods of extreme heat. 

Residents who have access to and are able to afford the use of air conditioning must use greater 

energy to cool their home than would be required with a different construction style. Thus 

Brisbane is an interesting city in which to study the health effects of extreme temperatures. 

Previous research has found that both high and low temperatures are linked to elevated morbidity 

and mortality in Brisbane (Bi et al. 2008; Derrick 1965; Huang et al. 2012; Tong et al. 2010b; 

Wang et al. 2009). However, the impacts across the population are likely to vary among 

population sub-groups. Temperature-related morbidity and mortality are related to exposure, 

vulnerability, and behavior (Bi et al. 2011). The key variables related to vulnerability are 

believed to be age, as the human thermoregulatory capacity diminishes over time, and income, as 

those with more financial resources are likely to have good indoor climate control systems or 

better insulated housing (e.g., Tod et al. 2012). 

A spatial variation in at-risk individuals across a city would likely result in some areas with 

higher population sensitivity to temperature than others (Hondula et al. 2012; Reid et al. 2009). 

There is also spatial variability in temperature exposure as the complexities of the physical and 

built environment create localized microclimates (Bassil et al. 2009; Rey et al. 2009; Smargiassi 

et al. 2009). Thus there is strong theoretical support for finding a non-uniform spatial pattern in 

heat-related morbidity and mortality in Brisbane. 

In this study we explore the spatial variability in sensitivity to heat in Brisbane and identify area-

level risk factors associated with the spatial patterns in risk. Risk mapping can help to identify 

vulnerable areas and create more efficient strategies for resource allocation to mitigate and cope 
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with the effects of extreme weather. Brisbane is an important city to conduct this research with 

the potential for significant increases in heat events and heat-related mortality combined with its 

large and growing population (Bi et al. 20008; Bi et al. 2011; Guest et al. 1999). 

Methods  

Data sources  

We examined morbidity data by using the daily totals of emergency non-accidental hospital 

admissions for residents of each of the 158 Statistical Local Areas (SLAs, henceforth “areas”) of 

Brisbane (Figure 1, Supplemental Table S1). The data excluded selected external causes, 

including transport accidents, intentional self-harm, assault, medical complications, legal 

interventions, and hospital-related adverse events (ICD10 codes: V00-V99, X60-X84, X85-Y09, 

Y35-Y36, Y40-Y84, Y85-Y87.19, Y88-Y89.19). Admissions were coded by patients’ area of 

residence. Over the five years of data (1 January 2007–31 December 2011) there were 353,231 

admissions, with an average of 193 admissions per day. The daily time series shows inter-annual 

variability and an increasing mean over time (Figure 2). We used a 50-day local regression 

smoother (LOESS) for initial visualization of longer-term temporal patterns in the morbidity data 

(Cleveland and Devlin 1988). Total admissions varied greatly between areas, largely in 

proportion to population size (Supplemental Material, Table S1). 

Daily weather data were obtained from two stations in the study region, one located near the 

central business district and another ten kilometers to the south at Archerfield Airport (Figure 1). 

These stations were selected because of their continuous record over the study period with very 

few missing days (less than 0.5%) and their close proximity to populated areas, thus potentially 

best capturing residential exposure. We used the mean of the two stations’ data on all days for 

which both data points were available, and the single available measurement for days where one 

http:Y88-Y89.19
http:Y85-Y87.19
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station was missing. The station data were highly correlated (r > 0.98). The average annual 

temperature over the five-year period was 20.8 °C ranging between a minimum of 2.5°C and 

maximum of 39.9 °C. Mean monthly temperatures peak in January and February above 25°C and 

are lowest in July near 15 °C. The meteorological data were downloaded from the United States 

National Climatic Data Center’s Global Historical Climate Network portal, a compilation of 

quality-controlled global surface observations (http://www.ncdc.noaa.gov/data-access/land-

based-station-data). 

Demographic data at an area level were obtained from the Australian Bureau of Statistics 2006 

Census Data. From these data we created a set of potential explanatory variables at the area level 

including: percent of individuals with income below $150 per week, percent of individuals with 

income below $250 per week, percent of individuals with income above $1600 per week, 

population density, percent of structures with two or more stories, percent of individuals 

requiring public assistance, percent of individuals over age 65, and percent of individuals with no 

education beyond high school. Variable selection was based on availability from the Bureau of 

Statistics, prior knowledge derived from the heat vulnerability literature (e.g., Reid et al. 2009), 

and sufficient spatial heterogeneity at the area level for statistical robustness (e.g., there was 

insufficient spatial variability in race/ethnicity for useful analysis and thus these variables were 

not considered). The total population of Brisbane was 956,130 in 2006. Elevation data were 

obtained at a 30 meter resolution from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). ASTER GDEM is a 

product of the Japanese Ministry of Economy, Trade, and Industry (METI) and the United States 

National Aeronautics and Space Administration (NASA). We extracted the mean elevation per 

area using the Zonal Statistics tool in ESRI ArcMap version 10.0. 

http://www.ncdc.noaa.gov/data-access/land
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The admissions data were obtained from Queensland Health. Ethical approval for the study was 

obtained from the Central Office of the Human Research Ethics Committee, Queensland Health 

(HREC/12/QHC/39). 

Statistical modeling  

We created a series of statistical models with increasing complexity to estimate the impact of 

temperature on hospital admission rates and identify the extent to which certain area-level 

predictors of susceptibility modify the association We used data from the warm season only, 

defined as October through March. 

The first goal was to estimate the impact of high temperatures on hospital admissions for the 

whole city (i.e., all areas combined) during the warm season. We used a Poisson regression 

model in a Bayesian framework using JAGS software version 3.2.0 (http://mcmc-

jags.sourceforge.net) to relate citywide admissions to one-day lagged maximum dry bulb 

temperature (tmax1). Model I was: 

Oj ~ Poisson(µj) [1] 

log(µj) = α + log(E) + timej + temperaturej 

timej = holsj + dowj + doyj 

temperaturej = γ × tmax1j 

where O is the observed number of hospital admissions across Brisbane on day j, E is an offset to 

control for population size, and α is the intercept. The offset term E is included in Model I so that 

results from Models II and III (where E varies by area) can be compared to those of Model I. The 

time component comprises categorical variables to account for holidays (hols) and day of week 

(dow), and a day-of-year variable (doy) used to capture seasonality and long-term trends that are 

http:jags.sourceforge.net
http://mcmc
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assumed to be unrelated to short-term weather effects. The doy variable was created using 

piecewise basis functions with five knots per warm season or four knots for the warm seasons at 

the start and end of the study period (Gasparrini et al. 2010). 

Four different categories were coded for holidays as exploratory analysis revealed markedly 

different impacts of holidays on hospital admissions. For example, while many holidays were 

associated with a reduction in admissions around 15%, Christmas Day was associated with a 

larger 25% reduction and January 2 was consistently associated with increased admissions. 

A linear coefficient γ was chosen for the temperature-hospital admissions relationship 

(henceforth, “temperature slope”) after a range of other more flexible options were tested (data 

not shown). We explored using minimum, mean, and apparent temperatures over a range of lags 

and non-linear smoothers, and found that a linear one-day lagged maximum dry bulb temperature 

(tmax1) was most strongly related to daily admissions. 

Model II was developed to account for both spatial and temporal variability in admissions. The 

previous model estimated a slope of the temperature-admissions relationship for all Brisbane (γ), 

here the goal was to estimate the slope in each area using: 

Ojk ~ Poisson(µjk) [2] 

log(µjk) = α + log(Ek) + timej + temperaturejk+ πk + smooth.areak 

timej = holsj + dowj + doyj 

temperaturejk = γk × tmax1j 

smooth.areak = ewk + nsk 
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where smooth.area is a spatial smoother that accounts for large-scale variability in admissions in 

the north–south (ns) and east–west (ew) directions. The spatial smoother was a spline with two 

degrees of freedom for the east-west and north-south effects to allow for the possibility of 

smooth but non-linear change in risk across the region. The population size of each area k was 

accounted for with the offset term Ek. Consistent differences between areas were modeled with a 

random intercept πk, to account for areas with unusually high or low rates of admissions. (All 

other variable and subscript definitions can be found in the text following Model I). 

The temperature slope γk was modeled as a random effect for each area. Areas with a positive 

temperature slope and 95% credible interval excluding zero were considered to have a 

statistically significant positive association between temperature and hospital admissions, 

whereas areas with a negative slope and credible interval excluding zero were considered to have 

an inverse association between temperature and hospitalization. We tested for spatial 

autocorrelation in the area-level temperature effects using Moran’s I statistic (Odland 1988). 

Beyond identifying those areas of Brisbane where heat is associated with hospital admissions, we 

were also interested in identifying factors that predicted the spatial variability in the association 

with heat. In Model III we added a linear term λ to modify the heat-slope using area-level 

variables. Model III was specified as: 

Ojk ~ Poisson(µjk) [3] 

log(µjk) = α + log(Ek) + timej + temperaturejk+ πk + smooth.areak 

timej = holsj + dowj + doyj 

temperaturejk = γk × tmax1j 
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γk = γ* + λ × sla.vark 

smooth.areak = ewk + nsk 

where γ* is the average temperature coefficient across all areas and sla.var is the area-level 

variable (see full list of variables in Data Sources). Positive values for λ mean that the 

association between heat and hospitalizations is stronger in areas with higher values of the area-

level predictor. We explored each of the area-level variables in single variable regressions, as 

well as selected combinations in multiple variable regressions. Candidate models for multiple 

variable regression were those in which individual factors demonstrated an association that was 

statistically significant or approaching statistical significance, and the individual factors were not 

highly collinear. 

In summary, the parameters of interest estimated by the models were: γ, the overall estimate of 

the temperature-admissions slope; γk, the estimated temperature effect in each area k; and λ, the 

estimated effect of each area-level variable. We report associations between hospital admissions 

and a 10 °C increase in temperature on the previous day, which is consistent with the difference 

in temperature between relatively hot and relatively cool summer days. 

We used a burn-in and sample size of 5,000 Markov Chain Monte Carlo (MCMC) simulations 

for Model I, and 2,000 for Models II and III. Non-informative N(0,1000) priors were used for all 

means and Gamma(1,1) priors for variances. 

Results   

Model I  

In the first model we estimated the average effect of temperature for Brisbane as a whole. A 

10 °C increase in temperature on the previous day was associated with a statistically significant 
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7.2% increase (95% CI: 4.7, 9.8%) in total non-accidental hospital admissions across the city. 

This would correspond to 13.9 (95% CI 9.0, 18.9) additional admissions per day relative to the 

mean rate of 193 admissions per day. 

Model II   

In the second model we tested whether the association between temperature and hospital 

admissions varied across the 158 areas included in the Brisbane study area. We found significant 

variability, with area-level slopes ranging from a 55% decrease in admissions (95% CI: -75.9, 

17.2%) per 10°C increase in temperature to 102% increase (95% CI: 10.6, 257.9%). Statistically 

significant positive slopes were estimated for 16 areas, and statistically significant negative 

slopes were estimated for 5 areas (Table 1). Areas with high slopes were geographically spread 

across the city (Figure 3), and Moran’s I statistic indicated no significant spatial autocorrelation 

in the area-level temperature effect (I = –0.02, p = 0.19). 

Areas with the strongest positive associations between temperature and hospitalization tended to 

be located along a north-to-south oriented axis through the central business district of the city. 

Areas with significant associations spanned from near the northern boundary of the study region 

to the southern boundary. In contrast, there were no areas in the eastern or western thirds of the 

region with significant associations between temperature and hospitalization. As the width of the 

95% CI varied by area according to sample size, there were some areas with relatively strong 

associations that were not statistically significant (and vice versa). Areas with significant positive 

associations often bordered areas where there was no association or an inverse association 

between temperature and hospitalization. 
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Model III  

We next sought to relate the spatial pattern of heat sensitivity (Figure 3) to a number of factors 

believed to be associated with heat-related risk. Of the eight variables tested, only population 

density was statistically significantly associated with the spatial pattern of heat sensitivity (Table 

2). We estimated a 55.4% (CI: 20.7, 93.1%) increase in the temperature slope in association with 

a 1,000-person increase in residents per square kilometer (Figure 4a). A 1% increase in the 

proportion of residents with weekly incomes over $1,600 was associated with an 8.5% decrease 

(CI = –17.4%, 0.7%) in the slope of the temperature-hospitalization association (Figure 4b). 

The scatter-plots comparing population density and income to heat sensitivity (the temperature 

slope) for each area show a high level of noise (Figures 4a and 4b) but these variables were the 

strongest modifiers of the temperature-hospitalization association. When we included both 

population density and income in a multivariable regression model, the magnitude of the 

coefficient increased for both terms, and income became statistically significant. With both terms 

in the model, we estimated a 91.1% increase in the temperature slope (95% CI: 46.4, 136.7%) for 

every 1,000-person increase in population density, and a 20.3% decrease in the slope (95% CI: – 

33.3, –7.3%) for every one percent increase in high earners (Table 2). 

Discussion  

The results of this study are summarized by three major findings: (1) higher summer 

temperatures were associated with higher daily hospital admissions on the following day in 

Brisbane; (2) statistically significant positive associations between summer heat and hospital 

admissions were estimated for only some areas of the city and significant negative associations 

were estimated for others, thus the estimated effect of temperature was spatially heterogeneous; 

(3) on average, areas with greater sensitivity to heat were characterized by higher population 
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densities and lower proportions of high-income residents. Collectively these results provide 

motivation for continued investment in heat emergency preparedness in Brisbane and offer 

important insights to help policy makers target the most vulnerable communities. To our 

knowledge, this study is the first to investigate the within-city variability in sensitivity to heat in 

Brisbane, a region that presently experiences very high summer temperatures and one predicted 

to have more extreme heat in the future. The method presented could be readily applied to other 

locations where fine-scale geographically referenced health outcome data are available. 

Evidence that, on average, hospitalizations increased with elevated temperatures on the previous 

day is consistent with other studies that have examined relationships between temperature and 

morbidity (or mortality) in Brisbane (Tong et al. 2010a; Tong et al. 2010b; Wang et al. 2009; Yu 

et al. 2011). However, we found that a positive statistically significant relationship between 

temperature and hospital admissions was evident in only some areas of Brisbane. This result 

suggests that the health burden attributable to heat in Brisbane might be reduced through 

geographically targeted intervention measures. These strategies might include tree planting, the 

use of reflective painting on dwellings, and improvements to home insulation and air 

conditioning. Interestingly, locations of high heat sensitivity were scattered throughout the city; 

there were only two instances where neighboring areas both had a positive significant slope 

(Paddington and the northern section of City-Remainder; Inala and Doolandella-Forest Lake). 

There were also cases where areas with a significant positive slope bordered another with a 

significant negative slope (City-Remainder and City-Inner; McDowall and Bridgeman Downs). 

In total five areas had a statistically significant negative association between temperature and 

hospitalization on the following day. It is possible that actions taken by residents of these areas 

in response to heat may reduce their risk of hospital admission overall. Two of the areas with the 
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strongest negative associations also have very low population densities, and the area with the 

strongest negative association (Burbank) has ample green space and open water, thus 

environmental factors could be behind the protective effect. Finally, the health of residents of 

these locations may be more negatively impacted by low summer temperatures instead of high 

ones, which would also lead to the negative statistical relationship we found. Periods of cool, 

damp conditions during the summer months have been previously associated with elevated 

respiratory hospital admissions in the United States (e.g., Hondula et al. 2013). 

The result of spatially heterogeneous sensitivity to heat within Brisbane adds to a growing 

literature reporting non-uniform effects within large metropolitan areas (e.g., Hondula et al. 

2012; Smargiassi et al. 2009; Vaneckova et al. 2010). Research in prior decades documenting 

important between-city differences in sensitivity to heat (e.g., Curriero et al. 2002; Kalkstein and 

Davis 1989) contributed to the adoption of city-specific heat thresholds, plans, and warning 

systems (Hondula et al. 2013; Sheridan and Kalkstein 2004). There is a growing body of 

research supporting the need to consider within-city differences in sensitivity to heat when 

developing and implementing municipal emergency response measures and long-term planning 

efforts. Although it is hard to know the extent to which the results are sensitive to the specific 

geographic boundaries chosen (the modifiable areal unit problem) (Openshaw 1983), our 

findings suggest that there are pockets of isolated, vulnerable communities throughout Brisbane 

that merit targeted efforts to mitigate the negative health impacts of heat. Brisbane public health 

officials are encouraged to continue investing in heat-health intervention strategies, as the recent 

data used in this study demonstrate that high temperatures remain a persistent health problem. 

Reduction of the heat-health burden could be achieved by existing and new intervention 

strategies tailored to the particular communities where the historical risk has been greatest. 



 
 

       

     

         

      

      

        

          

         

      

         

        

      

      

       

        

          

     

           

      

      

             

       

 

15 

We examined if the spatial pattern in heat sensitivity could be explained by area-level variables. 

Intervention measures targeting high-risk communities might vary, for example, if the high-risk 

communities were those associated with lower incomes versus those that were located in places 

of high building density likely impacted by urban heat island effects. Most of the variables 

examined showed no statistically significant relationship with area-level heat slopes. Most 

surprisingly we did not find any evidence that areas with higher percentages of elderly residents 

had higher hospital admissions during periods of extreme heat. The variables that were related to 

area-level variability in heat sensitivity were population density and the percent of individuals in 

each area earning above $1,600 per week. These two associations are consistent with existing 

literature. Income has been reported elsewhere as a useful determinant of heat vulnerability (e.g., 

Reid et al. 2009; Hondula et al. 2012); income is believed to be good proxy for access to air 

conditioning. Interestingly we did not find a relationship when examining the percentage of 

residents within each postal code with income levels associated with poverty status ($150 and 

$250 per week). Instead, we found that areas with higher percentages of high income earners 

were at less risk, which could indicate that difficulty coping with heat is not limited to poorer 

parts of the city. Areas of higher population density are likely to have a higher amount of 

development and impervious surfaces, thus potentially experiencing urban heat island effects 

because of the thermal properties of the built environment. We did not find a statistically 

significant relationship with the percentage of buildings with two or more stories, another 

variable closely related to the intensity of development and potential urban heat island effects. 

This contrast might arise because only a small number of areas in Brisbane have numbers of 

multi-story buildings, or because those areas with multi-story buildings are also those with many 

high income earners. 
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We acknowledge that this study has several limitations. The most notable limiting factor is 

sample size; only five years of data were available with the area of residence information. Using 

a relatively recent time period makes the research more relevant for current decision makers, but 

restricted larger data sets based on more years may have increased our potential to find area-level 

variability in sensitivity and area-level factors related to spatial heterogeneity. Continued efforts 

of local, state, and national governments to make health outcome data available to researchers 

could help alleviate these concerns (and others) in future research. We surmised that areas with 

higher population density likely experience higher air and surface temperatures during extreme 

heat events because of urban heat island effects. A comprehensive assessment of the urban heat 

island of Brisbane does not yet exist and would be helpful in clarifying interactions between the 

built environment and microclimatic conditions in Brisbane. For example, it may be that 

suboptimal living conditions (rather than higher temperatures) contribute to higher hospital 

admissions rates in densely populated areas on hot days. Particular aspects of our methodology 

that might be addressed differently in future research include the consideration of air pollutants 

(we did not explore co-exposure effects and potential impacts on the temperature slope) and 

examination of spatial effects during heat waves (we looked at all summer days and did not treat 

heat waves differently than isolated hot days) (Anderson and Bell 2011; Barnett et al. 2012). 

Conclusions   

Extreme heat remains a public health concern in Brisbane, as data from the recent period 2007– 

2011 demonstrate a statistically significant increase in hospital admissions when summer 

temperatures rise. Our estimates suggest that for every 10°C increase in daily maximum 

temperature, Brisbane area hospitals should be prepared for, on average, 14 additional admitted 

non-accidental emergency patients on the following day. This 7.2% increase over the daily 
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average of 190 admissions represents a burden on healthcare and financial resources. As heat-

related illness and death are preventable, continued efforts to protect the public during periods of 

dangerous heat are warranted. One particular strategy that might be useful in Brisbane is to 

geographically target various intervention campaigns, as we found evidence of statistically 

significant relationships between heat and hospital admissions in only 16 of the 158 areas of the 

city. Such geographically targeted efforts should prioritize those places without high income 

earners, as we found a relationship between area-level income and sensitivity to heat. We also 

found that areas with higher population density were associated with higher admissions, which 

may be related to higher thermal stress because of urban heat island effects and/or indoor living 

conditions. Quantifying within-city variability in sensitivity to heat may be a useful way for 

researchers to aid public officials in their effort to allocate resources aimed at protecting the 

public during extreme heat events in an efficient and effective manner. 
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Table 1. Brisbane areas with statistically significant positive or negative associations between 

summer temperature and hospitalization on the following day, the magnitude of the association, 

and area-level characteristics (income and population density) that predict the magnitude of the 

associations. The temperature-hospitalization association and area-level modification effects 

were determined from a hierarchical Bayesian model.  

SLA Name Heat Slope (% change in 
admissions per 10°C 

increase in temperature) 

% earning > 
$1600/week 

Population 
Density 

(per km2) 
Median values (all Brisbane SLAs) 4.11 5.95 1670.04 
Areas with positive heat slopes 
Archerfield 101.71 (10.63, 257.86) 0.52 122.90 
Bowen Hills 70.31 (17.60, 148.08) 6.44 926.45 
City - Remainder 59.35 (11.21, 129.42) 9.99 2947.13 
Deagon 54.80 (15.98, 104.43) 1.77 1169.92 
Jindalee 49.22 (13.12, 98.09) 6.50 1958.26 
Robertson 38.89 (4.99, 83.50) 5.34 2497.55 
Camp Hill 35.05 (11.13, 63.10) 7.99 2138.40 
Northgate 34.48 (3.53,77.97) 4.74 1262.11 
McDowall 32.95 (2.32, 74.55) 8.52 1574.82 
Kuraby 32.49 (2.30, 71.74) 4.39 1434.30 
Annerley 28.70 (8.03, 51.45) 4.98 3379.53 
Paddington 28.45 (0.63, 62.51) 11.73 3185.38 
Inala 24.73 (8.54, 41.97) 0.37 2231.79 
Salisbury 23.26 (1.90, 48.40) 1.90 1175.73 
Doolandella-Forest Lake 22.28 (5.06, 42.59) 3.46 1757.57 
Sunnybank Hills 19.82 (4.71, 36.96) 3.80 2503.21 
Areas with negative heat slopes 
Burbank -55.07 (-75.92, -17.22) 9.63 38.56 
City - Inner -43.99 (-64.02, -12.01) 15.66 3870.94 
Karana Downs-Lake Manchester -42.53 (-62.74, -10.89) 6.71 30.97 
Mount Gravatt -29.09 (-43.15, -11.41) 3.89 1127.99 
Bridgeman Downs -23.19 (-39.65, -2.98) 11.62 786.52 
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Table 2. Estimated percent change in the association between daily maximum temperature (one-

day lag) and hospital admissions (λ) per unit change in area-level predictors (Model 3). 

Predictor Unit change in 
predictor 

Percent change in temperature-
admissions slope (95% CI) 

Single area-level predictor models 
% > 65 years of age 1% -0.1% (-6.9, 6.4) 
% with income < $150/week 1% -1.5% (-12.0, 8.8) 
% with income < $250/week 1% 2.7% (-4.9, 10.2) 
% with income > $1600/week 1% -8.5% (-17.4, 0.7) 
% with ≤ high school education 10% -1.6 (-29.3, 26.8) 
% requiring assistance based on 
disability status 

1% 1.9 (-19.5, 23.9) 

% of buildings with ≥2 stories 10% 0.8 (-17.8, 20.4) 
Population density 1000 / km2 55.4 (20.7, 93.1) 
Multiple area-level predictor model 
% with income > $1600/week (adjusted 
for population density) 

1% -20.3 (-33.3, -7.3) 

Population density (adjusted for % with 
income >$1600/week) 

1000 / km2 91.1 (46.4, 136.7) 

NOTE: Models were hierarchical and accounted for long-term time trends and seasonality in 

hospital admissions. All models shown included only one predictor with the exception of one 

multiple variable model that included both income and population density. 
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Figure legends  

Figure 1. A map of the boundaries of the 158 Statistical Local Areas (SLAs) in the City of 

Brisbane. The inset shows the central business district (CBD) and the locations of Brisbane and 

Archerfield weather stations. 

Figure 2. The time series of daily hospital admissions in Brisbane (2007–2011). The dashed line 

is the mean admissions of 193 per day and the solid black line is a 50-day LOESS moving 

average used to highlight periodicity that is not evident from the scatter of points. 

Figure 3. The estimated associations between temperature and hospital admissions for each 

Statistical Local Area in Brisbane in terms of the change in daily admissions rate per 10°C 

increase in temperature on the previous day. The white crosses identify areas where the slope is 

statistically significantly positive. 

Figure 4. Panel a (left) shows the relationship between area-level heat sensitivity, measured as 

the percent increase in hospital admissions per 10°C increase in temperature on the previous day, 

and the population density of each area. Panel b (right) show the relationship between 

temperature sensitivity and the percent of high income-earning residents in each area. A line of 

best fit has been added to each panel; a solid line indicates ordinary least squares statistical 

significance. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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